5.2 Traffic/Circulation

Information contained in this section is summarized from the traffic technical report, *Traffic Impact Analysis* for the Dos Colinas Subdivision Project, prepared by Linscott, Law& Greenspan (LLG) Engineers (July 8, 2010). This document is provided as Appendix B on the attached CD of Technical Appendices found on the back cover of this EIR.

5.2.1 Existing Conditions

5.2.1.1 Existing Street Network

The roadways in the vicinity of the project site (both the CCRC site and affordable housing site) that may be impacted by traffic generated by the proposed project include Tamarack Avenue, Cannon Road, College Boulevard, El Camino Real, and Palomar Airport Road. The following provides a brief description of each of these roadways:

Tamarack Avenue is classified as a Secondary Arterial on the City of Carlsbad Circulation Element. This roadway is an east-west roadway and provides two lanes of travel in each direction.

Cannon Road is classified as a Major Arterial on the City of Carlsbad Circulation Element. East of El Camino Real, this roadway is currently constructed as a three-lane divided roadway.

College Boulevard is classified as a Major Arterial on the City of Carlsbad Circulation Element. This roadway is an east-west roadway. It was assumed that the College Boulevard extension between El Camino Real and Cannon Road would be completed by opening day of the project and was assumed as such in the traffic analysis.

El Camino Real is classified as a Prime Arterial on the City of Carlsbad Circulation Element. This roadway is a north-south roadway.

Palomar Airport Road is classified as a Prime Arterial on the City of Carlsbad Circulation Element. This roadway is an east-west roadway.

5.2.1.2 Analysis Approach and Methodology

Study Area

Based on the anticipated distribution of the project traffic, the specific study area includes the following intersections and street segments. Per SANTEC, the study area should include intersections with 50 peak hour trips or more. The City of Carlsbad's Growth Management Program requires the study area to include facilities carrying 20% or more of the project generated traffic. Based on SANTEC guidelines, Carlsbad Growth Management Program, and other adjacent intersections/street segments, the following intersections and road segments have been studied:

Intersections

- El Camino Real/Tamarack Avenue¹
- El Camino Real/Cannon Road¹
- El Camino Real/College Boulevard¹
- El Camino Real/Faraday Avenue¹
- El Camino Real/Palomar Airport Road¹
- Cannon Road/Faraday Avenue²
- College Boulevard/Faraday Avenue¹
- College Boulevard/Palomar Airport Road¹
- College Boulevard/Project Driveway North/Cantarini Ranch Driveway³
- College Boulevard/Project Driveway South/Cantarini Ranch Driveway³
- Project Driveway/Sunny Creek Road³
- College Boulevard/Cannon Road³

Street Segments

- El Camino Real: Tamarack Avenue to Cannon Road¹
- El Camino Real: Cannon Road to College Boulevard²
- El Camino Real: College Boulevard to Faraday Avenue²
- El Camino Real: Palomar Airport Road to Camino Vida Roble²
- Cannon Road: Faraday Avenue to El Camino Real²
- College Boulevard: Faraday Avenue to El Camino Real²
- College Boulevard: El Camino Real to Cannon Road³,⁴

The traffic analysis assessed the key intersections and street segments in the project area. The study area intersections and segments were analyzed in the following scenarios:

- Existing
- Existing with Project
- Year 2020
- Year 2020 with Project
- Year 2030
- Year 2030 with Project

The traffic impact analysis was prepared using the 2000 Highway Capacity Manual's (HCM) operation analysis Level of Service (LOS) evaluation criteria. The operating conditions of the study intersections were

Dos Colinas Draft EIR 5.2-2 September 2010

¹ Existing Facility-Counts taken from the City of Carlsbad 2008 TMP.

² Counts commissioned by LLG Engineers.

³ Future Facility.

⁴ This segment volume is estimated based on the peak hour/daily relationships along this corridor. See LLG Report.

measured using the HCM LOS designations ranging from A through F. LOS A represents the best operating conditions and LOS F denotes the worst operating conditions.

Signalized and unsignalized intersections were analyzed using the *Intersection Capacity Utilization (ICU)* method for Existing and Existing with Project conditions and the *HCM* method for all of the other scenarios. A more detailed explanation of the ICU and HCM method can be found in the appendices provided on the CD attached to the back cover of this EIR.

Street segments were analyzed on a peak hour basis. The midblock peak hour volumes were utilized to calculate volume to capacity ratio (V/C) for each direction of the street segment. The City of Carlsbad assumes a one-direction capacity of 1,800 vehicles per hour per lane for through lanes. A LOS is determined by using V/C thresholds.

Lastly, intersection queue lengths were obtained from the *Synchro* (version 7) software package. The 95th percentile intersection queue length (per lane) and the maximum available storage by movement are reported for each intersection. The queue lengths are based on green times and represent estimated lengths, which are difficult to predict accurately. Adjustments to green times can be made to give some movements more priority, and therefore, change the resultant queue length.

5.2.1.3 Existing Traffic

A. Intersections

Table 5.2-1 includes the results of the intersection level of service evaluation for existing conditions. The study area intersections are calculated to currently operate at LOS C or better.

B. Street Segments

Table 5.2-2 includes existing street segment levels of service based on the highest peak hour per lane, taken from intersection peak hour traffic counts, and a per lane capacity of 1,800 Vehicles Per Hour Per Lane (VPHPL). As shown, all street segments currently operate at LOS A.

5.2.2 Threshold for Determining Significance

Appendix G of the CEQA Guidelines is used to provide direction for determination of a significant traffic/circulation impact from the proposed project. For purposes of this EIR, a significant impact would occur if the proposed project would:

Conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for
the performance of the circulation system, taking into account all modes of transportation
including mass transit and non-motorized travel and relevant components of the circulation
system, including but not limited to intersections, streets, highways and freeways, pedestrian and
bicycle paths, and mass transit;

TABLE 5.2-1 Existing Intersection Operations

Inte	rsection	Traffic Control	Peak Hour	ICU a	LOSP
1.	El Camino Real / Tamarack Avenue	Signal	AM	0.614	В
			PM	0.549	Α
2.	El Camino Real / Cannon Road	Signal	AM]	0.549	Α
			PM	0.712	С
3.	El Camino Real / College Boulevard	Signal	AM	0.547	A
			PM	0.547	Α
4.	El Camino Real / Faraday Avenue	Signal	AM	0.614	В
			PM	0.604	В
5.	El Camino Real / Palomar Airport Road	Signal	AM	0.506	Α
			PM	0.724	С
6.	Cannon Road / Faraday Avenue	Signal	AM	0.500	A
1	·		PM	0.600	В
7.	College Boulevard / Faraday Avenue	Signal	AM	0.539	_ A
	_		PM	0.540	Α
8.	College Boulevard / Palomar Airport	Signal	AM	0.545	Α
ŀ	Road		PM	0.692	С
9.	College Boulevard / Project Driveway	Signal	AM	NA °	NA_
	North/Cantarini Project Driveway		PM	NA	NA
10.	College Boulevard / Project Driveway	Signal	AM	NA	NA
	South/ Cantarini Project Driveway		PM	NA	NA
11.	Project Driveway / Sunny Creek Road	Signal	AM	NA	NA _
	•		PM	NA	NA

Notes: a Intersection Capacity Utilization

b. Level of Servicec. Intersection not yet built.Source: LLG Engineers, 2010.

 ICU
 LOS

 0.0 ≤ 0.55
 A

 0.56 -0.64
 B

 0.65 -0.73
 C

 0.74 - 0.82
 D

 0.83 -0.91
 E

 >0.92
 F

TABLE 5.2-2 Existing Peak Hour Street Segment Operations

	- N	Peak	Existing		Existing	
Street Segment	Direction	Hour	Capacitya	Volume	V/C ^b	LOSc
El Camino Real						
	NB	AM	3,600	310	0.086	Α
Tamaraak Ayanya ta Cannon Boad	IND	PM	3,600	1260	0.350	Α
Tamarack Avenue to Cannon Road	SB	AM	3,600	1360	0.378	Α
	30	PM	3,600	610	0.169	Α
	NB	AM	5,400	720	0.133	Α
Cannon Road to College Boulevard	IND	PM	5,400	2200	0.407	A
Cannon Road to College Boolevald	SB	AM	5,400	2340	0.433	Α
	30	PM	5,400	1030	0.191	Α
	NB '	AM	5,400	690	0.128	Α
College Boulevard to Faraday Avenue	IND	PM	5,400	1240	0.230	Α
College Boolevara to Faraday Avertue	SB	AM	5,400	1780	0.330	Α
	30	PM	5,400	700	0.130	Α
	NB	AM	5,400	1140	0.211	Α
Palomar Airport Road to Camino Vida	IND	PM	5,400	1270	0.235	A
Roble .	SB	AM	5,400	1140	0.211	Α
	36	PM	5,400	1130	0.209	A
Cannon Road			·			,
	EB	AM	3,600	270	0.075	Α
Formula Acceptate Fl Coming Boot	LD	PM	3,600	860	0.239	Α
Faraday Avenue to El Camino Real	WB	AM	3,600	940	0.261	Α
	YVD	PM	3,600	340	0.094	<u> </u>
	EB	AM	3,600	210	0.058	Α
Sign in Built Calling Bandanand	EB	PM	3,600	1070	0.297	A
El Camino Real to College Boulevard	VA/D	AM	1,800	1050	0.583	Α
	WB	PM	1,800	420	0.233	A
College Boulevard					, _ _	
	NID	AM	3,600	300	0.083	A
5 A A A A A A A A A A A A A A A A A A A	NB	PM	3,600	490	0.136	Α
Faraday Avenue to El Camino Real	CD.	AM	3,600	660	0.183	A
	SB	PM	3,600	270	0.075	A
		AM				
	NB	PM				
El Camino Real to Cannon Road		,	⁻⁻ This s∈	egment is cu	ırrently not	built
	SB	AM				
		PM				

- Notes: a Capacity based on 1,800 vehicles per lane per hour
 - b. Volume to Capacity ratio
- c. Level of Service

Source: LLG Engineers, 2010.

LOS	V/C_
A	<0.6
В	0.61-0.70
С	0.71-0.80
D	0.81-0.90
E	0.91-1.0
F	>1.0

- Conflict with an applicable congestion management program, including, but not limited to level
 of service standards and travel demand measures, or other standards established by the county
 congestion management agency for designated roads or highways;
- Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks;
- Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment);
- Result in adequate emergency access; or,
- Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.

In addition, the City of Carlsbad uses both the ICU and HCM analysis methods to determine significant traffic impacts. Under the ICU methodology, a traffic impact is considered to be significant if the addition of project traffic causes an intersection or street segment to decrease worse than LOS D. For intersections or street segments which are currently operating worse than LOS D, a project impact will be considered significant if the project causes the ICU value at an intersection to increase by more than 0.02 or the volume-to-capacity ration at a segment to increase by more than 0.02. The defined thresholds for roadway segments and intersections are defined in Table 5.2-3.

TABLE 5.2-3 Impact Significant Thresholds-ICU

LOS without Project	Allowable Increase Due to Project
	Intersections (V/C) Roadway Segments (ICU)
A, B, C,D	A project's impact is deemed significant if degraded to LOS E or F
E, F	0.02

Source: LLG Engineers, 2010.

Notes: LOS= Level of Service, V/C= Volume to Capacity Ratio, ICU= Intersection Capacity Utilization

The defined thresholds for the analysis of HCM intersections are defined in Table 5.2-4. If the project exceeds the thresholds in Table 5.2-4, then the project may be considered to have a significant project impact.

TABLE 5.2-4
Impact Significant Thresholds-HCM

LOS with Projecta	Allowable Increa	se Due to Project ^b Segment (V/C)
E&F	2.0	N/A

Notes: a. All level of service measurements are based upon HCM procedures for peak-hour conditions.

b. If a proposed project's traffic causes the values shown in table to be exceeded, the impacts are deemed to be significant. These impact changes may be measured from appropriate computer programs or expanded manual spreadsheets. The project applicant shall then identify feasible mitigations (within the Traffic Impact Study report) that will maintain the traffic facility an acceptable LOS. If the LOS with the proposed project becomes unacceptable (see note above), or if the project adds a significant amount of peak hour trips to cause any traffic queues to exceed one or off-ramp storage capacities, the project applicant shall be responsible for mitigating significant impact changes.

Delay= Average stopped delay per vehicle measured in seconds for intersections, and LOS= Level of Service.

Source: LLG Engineers, 2010.

5.2.3 Environmental Impacts

The trip generation estimates for the proposed development were based on SANDAG's Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region- April 2002.

5.2.3.1 Project Trip Generation

The CCRC portion of the project will consist of 309 units and includes 62 cottage units, 166 independent living units, and 81 assisted living units. The affordable housing site consists of 29 affordable multi-family units. As depicted in Table 5.2-5, the total project is calculated to generate approximately 1,340 average daily trips (ADT) with 27 inbound/46 outbound trips during the AM peak hour and 62 inbound/40 outbound trips during the PM peak hour.

TABLE 5.2-5
Project Trip Generation

Use	Size		rip Ends .DT)		AM Peak	Hour			PM Peak Hour			
		Rate	Volumed	% of ADT	In: Out Spit	Vol In	ume Out	% of ADT	in: Out Split	Vol In	ume Out	
Western Projec	t Site			_								
Cottage	62 units	4/unita	250	5%	40%:60%	5	8	7%	60%:40%	11	7	
Independent Living	166 units	4/unita	660	5%	40%:60%	13	20	7%	60%:40%	28	18	
Assisted Living	81 units	2.5/unitb	200	4%	60%:40%	5	3	8%	50%:50%	8	8	
Eastern Projec	t Site											
Affordable Housing	29 units	8/unit ^c	230	8%	20%:80%	4	15	9%	70%:30%	15	7	
Total:			1,340			27	46			62	40	

Notes: a. Retirement Community rate based on Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region (SANDAG)-April 2002.

Source: LLG Engineers, 2010.

A. CCRC Site

The proposed 62 cottage units consist of one and two bedroom dwelling units with attached garages. No centralized dining or other recreational facilities are proposed; however, the residents of the cottages will be able to utilize the common dining and recreation facilities provided for the independent living units. Therefore, the *Retirement Community* trip rate was used as it best fits the description of this land use.

Similar to the cottage units, the proposed 166 independent living units consist of one and two bedroom dwelling units. Common areas for dining and recreational activities are provided within each of the

b. Congregate Care Facility rate based on Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region (SANDAG)-

c. Multi-family (6-20 DU/acre) rate based on Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region (SANDAG)- April 2002.

d. ADT volumes are rounded to the nearest 10.

buildings; therefore, similar to the cottages, the independent living units are expected to generate minimal traffic. The *Retirement Community* trip rate was also used for this land use.

The proposed 81 assisted living units are designed for the elderly and include assistance requirements for patients with special conditions. While this land use also features common areas for dining and recreational activities, due to the nature of the medical care provided, the use is expected to generate less traffic than the independent living units and cottages. As such, the Congregate Care Facility trip rate was used.

B. Affordable Housing Site

The proposed 29 affordable housing units consist of one, two, and three bedroom units. The Multi-family trip rate was used as it best fits the description of this land use.

5.2.3.2 Trip Distribution/ Assignment

The project generated traffic was distributed and assigned to the traffic study area. The distribution of project generated traffic was based on site access parameters, roadway system characteristics, proximity to the freeways, and population densities. Two separate distributions were developed to account for the future extension of Cannon Road. Figure 5.2-1 and 5.2-2 depict the project traffic assignment without and without the Cannon Road extension, respectively.

5.2.3.3 Project Plus Existing Conditions

This section includes an evaluation of existing average daily traffic and peak hour volumes at traffic study area street segments and intersections with project only traffic added. In order to accurately account for near-term conditions, adjustments to the existing traffic volumes were performed to account for the introduction (i.e., construction) of College Boulevard between El Camino Real and Cannon Road. Figure 5.2-3 depicts the future conditions and Figure 5.2-4 depicts the existing volumes rerouted due to the College Boulevard extension.

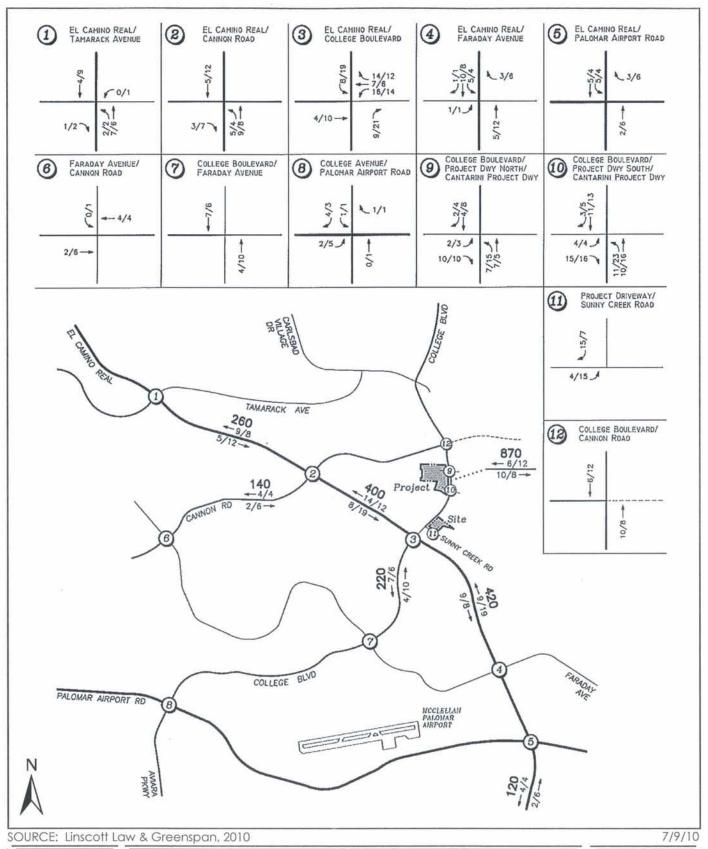
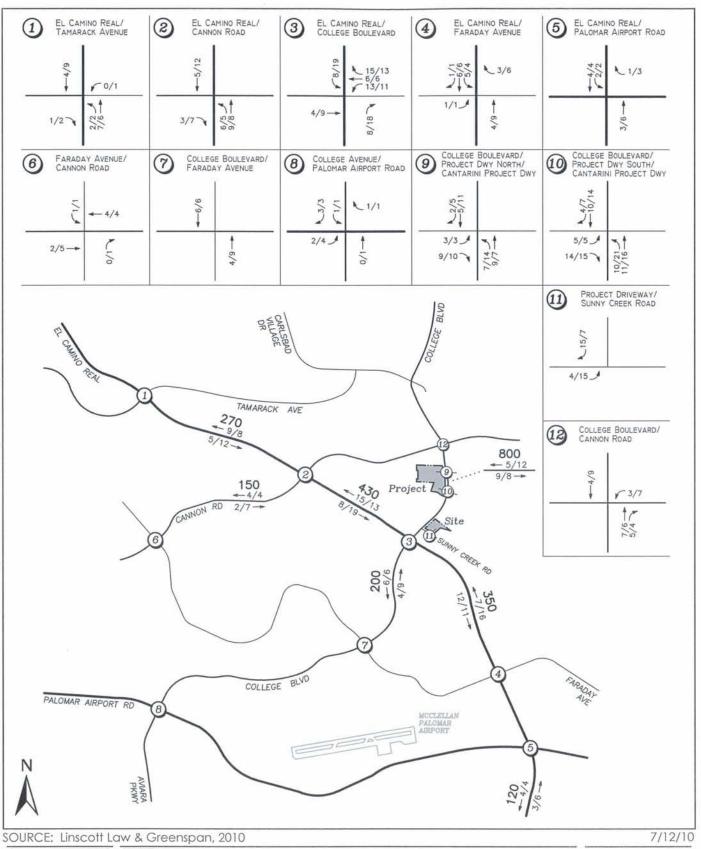

A. Intersections

Table 5.2-6 shows existing plus project intersection peak hour levels of service. With the addition of project traffic and rerouting due to the addition of College Boulevard, all of the study area intersections are calculated to continue operating at LOS C or better. A reduction in delay will occur at the El Camino Real/Cannon Road intersection due to the presence of College Boulevard as an alternate route. The College Boulevard extension will attract trips from El Camino Real since it will serve as a more direct route and hence the reduction in delay at El Camino Real/ Cannon Road. Based on the established significance criteria, no significant project related impacts would occur.

B. Street Segments

Figure 5.2-5 shows existing with project traffic volumes (without Cannon Road extension). Table 5.2-7 shows street segment levels of service with project traffic added to existing volumes on these segments. With the addition of project traffic, street segments are calculated to continue operating at LOS A. Volume reductions would occur due to the construction of College Boulevard between Cannon Road and El

Dos Colinas Draft EIR 5.2-8 September 2010

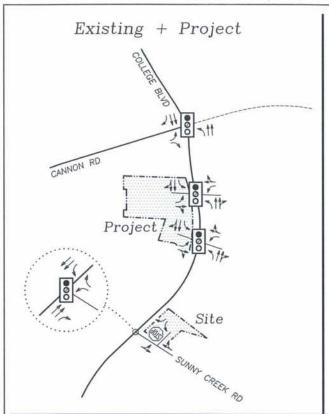


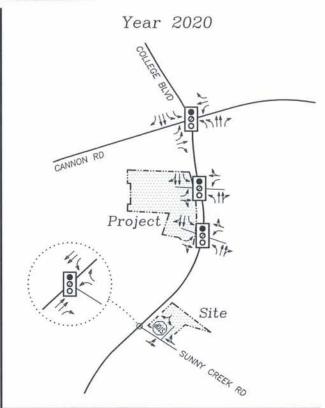
BEG CONSULTING INC.

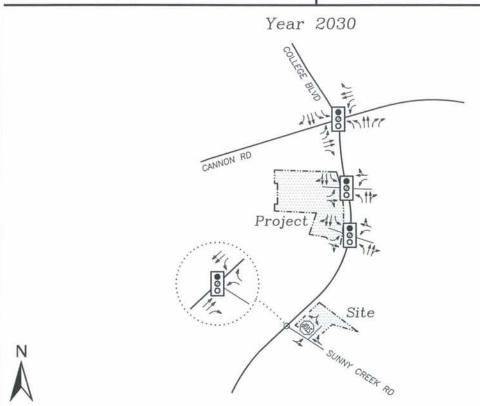
Dos Colinas EIR

Project Traffic Volumes
Without Cannon Road Extension

FIGURE




BRG CONSULTING, INC.

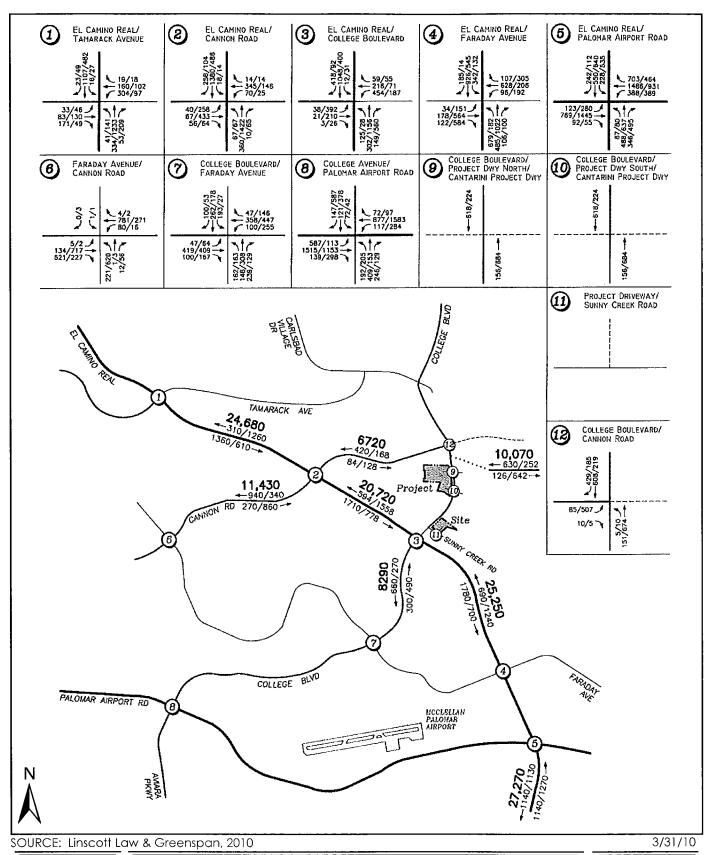

Dos Colinas EIR

Project Traffic Volumes
With Cannon Road Extension

FIGURE

SOURCE: Linscott Law & Greenspan, 2010

7/12/10



Dos Colinas EIR

Future Conditions Diagram

FIGURE

5.2-3

BRG CONSULTING, INC.

Dos Colinas EIR

Existing Traffic Volumes
With College Boulevard Extension

FIGURE

TABLE 5.2-6
Existing with Project Intersection Operations

Intersection	Traffic	Peak	Existi	ng	Existing Project		Project	Significant Project
intersection .	Control	Hour	ICU ª	LOS	ICU	LOS	Λc	Impact?
1. El Camino Real/	اممون	AM	0.614	В	0.615	В	0.001	None
Tamarack Avenue	Signal	PM	0.549	Α	0.551	В	0.002	None
2. El Camino Real/ Cannon	المرسون	AM	0.549	Α	0.504	Α	-0.450	None
Road	Signal	PM	0.712	С	0.707	С	-0.005	None
3. El Camino Real/ College	C: mun aul	AM	0.547	Α	0.549	Α	0.002	None
Boulevard	Signal	PM	0.547	Α	0.592	В	0.045	None
4. El Camino Real/ Faraday	المسماع	AM	0.614	В	0.615	В	0.001	None
Avenue	Signal	PM	0.604	В	0.605	В	0.001	None
5. El Camino Real/ Palomar	Ciam ad	AM	0.506	Α	0.507	Α	0.001	None
Airport Road	Signal	PM	0.724	С	0.725	С	0.001	None
6. Cannon Road/ Faraday	Ci ava avl	AM	0.500	Α	0.500	Α	0.000	None
Avenue	Signal	PM	0.600	В	0.601	В	0.001	None
7. College Boulevard/	Ciava ad	AM	0.539	Α	0.539	Α_	0.000	None
Faraday Avenue	Signal	PM	0.540	Α	0.541	Α_	0.001	None
8. College Boulevard/	Ciava ad	AM	0.545	Α	0.546	Α	0.001	None
Palomar Airport Road	Signal	PM	0.692	С	0.692	С	0.000	None
9. College Boulevard/		AM	NAd	NA	0.225	С		None
Project Driveway North/ Catarini Project Driveway	Signal	PM	NA	NA	0.229	Α	_	None
10. College Boulevard/		AM	NA	NA	0.258	Α		None
Project Driveway South/ Catarini Project Driveway	Signal	PM	NA	NA	0.233	A	_	None
11. Project Driveway/ Sunny		AM	NA	NA	0.187	Α		None
Creek Road	TWSCe	PM	NA	NA	0.187	Α		None
12. College Boulevard/	0	AM	NA	NA	0.426	Α	_	None
Cannon Road	Signal	PM	NA	NA	0.542	Α		None

Notes: a. Intersecton Capacity Utilization.

b. Level of Service.


c. Δ denotes project induced ICU increase.

d. Intersection not yet built.

e. Two-Way Stop Controlled – Minor Street Left-turn delay reported.

Source: LLG Engineers, 2010.

ICU	LOS
0.0 ≤ 0.55	Α
0.56 to 0.64	В
0.65 to 0.73	С
0.74 to 0.82	D
0.83 to 0.91	Е
> 0.92	F

BRG CONSULTING, INC.

Dos Colinas EIR

Existing With Project Traffic Volumes
Without Cannon Road Extension

FIGURE

TABLE 5.2-7 Existing With Project Street Segment Operations

	6					-					
		Pank			Existing		Existir	Existing with Project	lect	Project	Significant
Street Segment	Direction	Hour	Capacity	Volume	V/Cb	10Sc	Volume	V/C	los	Åd	Project Impact?
El Camino Real											
	2	AM	3,600	310	0.086	∢	319	0.089	4	0.003	None
	n Z	PM	3,600	1260	0.350	A	1268	0.352	∢	0.002	None
lamarack Avenue to Cannon Koda	ć	AM	3,600	1360	0.378	٧	1365	0.379	∢	0.001	None
	26	PM	3,600	919	0.169	∢	622	0.173	∢	0.004	None
	2	ΑW	5,400	720	0.133	Α	809	0.113	∢	-0.020	None
= (χ <u>α</u> Ζ	PM	5,400	2200	0.407	Α	1570	0.291	∢	-0.116	None
Cannon Road to College Boulevard	ú	AM	5,400	2340	0.433	4	1718	0.318	٧	-0.115	None
	28	PM	5,400	1030	0.191	A	797	0.148	٧	-0.043	None
		AM	5,400	069	0.128	∢	669	0.129	٧	0.001	None
	si Z	PM	5,400	1240	0.230	4	1259	0.233	٧	0.003	None
College Boulevard to Faraday Avenue	i i	AM	5,400	1780	0.330	٧	1789	0.331	٧	0.001	None
	28	PM	5,400	700	0.130	∢	708	0.131	Α	0.001	None
	4	AM	5,400	1140	0.211	∢	1142	0.211	٧	0.000	None
Palomar Airport Road to Camino Vida	S Z	PM	5,400	1270	0.235	A	1276	0.236	٧	0.001	None
Roble	ć	AM	5,400	1140	0.211	A	1144	0.212	4	0.001	None
	2B	PM	5,400	1130	0.209	4	1134	0.210	4	0.001	None
Cannon Road										į	
	1	AM	3,600	270	0.075	A	272	0.076	<	0.001	None
() () () () () () () () () ()	2	PM	3,600	098	0.239	٧	998	0.241	4	0.002	None
Faraday Avenue to El Camino Kedi		AM	3,600	940	0.261	A	944	0.262	∢	0.001	None
	Ω Χ	PM	3,600	340	0.094	<	344	960.0	4	0.002	None
	Ľ.	AM	3,600	210	0.058	∢	84	0.023	4	-0.035	None
== (((((((((((((((((((9	PM	3,600	1070	0.297	∢	128	0.036	∢	-0.261	None
El Camino Keal to College Boulevard	3	AM	1,800	1050	0.583	٧	420	0.233	∢	-0.350	None
	Ω Χ	PM	1,800	420	0.233	4	168	0.093	∢	-0.140	None
College Boulevard											
	2	AM	3,600	300	0.083	4	304	0.084	٧	0.001	None
	<u>o</u> Z	PM	3,600	490	0.136	4	200	0.139	٧	0.003	None
rardady Avenue to El Camino Real	a	AM	3,600	099	0.183	4	299	0.185	∢	0.002	None
	gc 	PM	3,600	270	0.075	∢	276	0.077	A	0.002	None

TABLE 5.2-7 Existing With Project Street Segment Operations (cont'd.)

Street Segment	Direction	Peak Hour	Capacitya		Existing		Existin	Existing with Project	Ject	Project Ad	Significant Project Impact?
College Boulevard (cont'd.)											
		AM	3,600	95	0.026	∢	136	0.038	٧	0.012	None
()	20 Z	PM	3,600	512	0.142	٧	929	0.181	<	0.039	None
El Camino Keal to Cannon Koad	C	AM	1,800	429	0.119	¥	989	0.177	∢	0.058	None
	28	PM	1,800	185	0.051	٧	264	0.073	<	0.022	None

a Capacity based on 1,800 vehicles per lane per hour
b. Volume to Capacity ratio
c. Level of Service
d. Project-induced increase in V/C
e. Segment not yet built.
e. LLG Engineers, 2010 Notes:

Source:

^/ C	<0.6	0.61-0.70	0.71-0.80	0.81-0.90	0.91-1.0	×1.0
SO1	∢	В	U	۵	ш	ш

Camino Real by the project. Since all street segments are expected to operate at acceptable levels of service (no worse than level of service D), no impacts are identified.

5.2.3.4 Year 2020 Conditions

Cumulative traffic conditions were evaluated using the *North County SANDAG Series* 11 Model (Year 2020). The forecast Model contains planned and existing developments land use information throughout the San Diego County. In particular, the City of Carlsbad requested that the following projects be included in the near-term model run.

(`anta	arını	Ranch

2. Carlsbad Oaks North

3. Emerald Pointe Estates

4. Alga Norte Community Park

5. Mammoth Professional Office Building

6. Robertson Ranch Master Plan

7. Holly Springs

8. Bressi Ranch Project

9. First Responders Training Center

10. High School Project

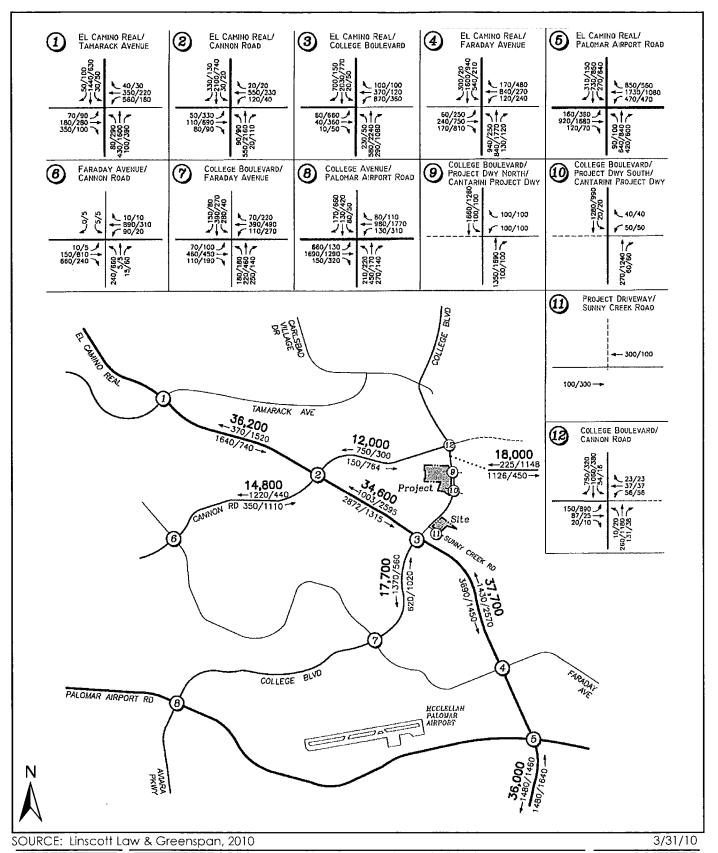
11. Legoland Hotel

12. Poinsettia Place

13. Carlsbad Medical Center

14. Westfield Mall Expansion

15. Aviara

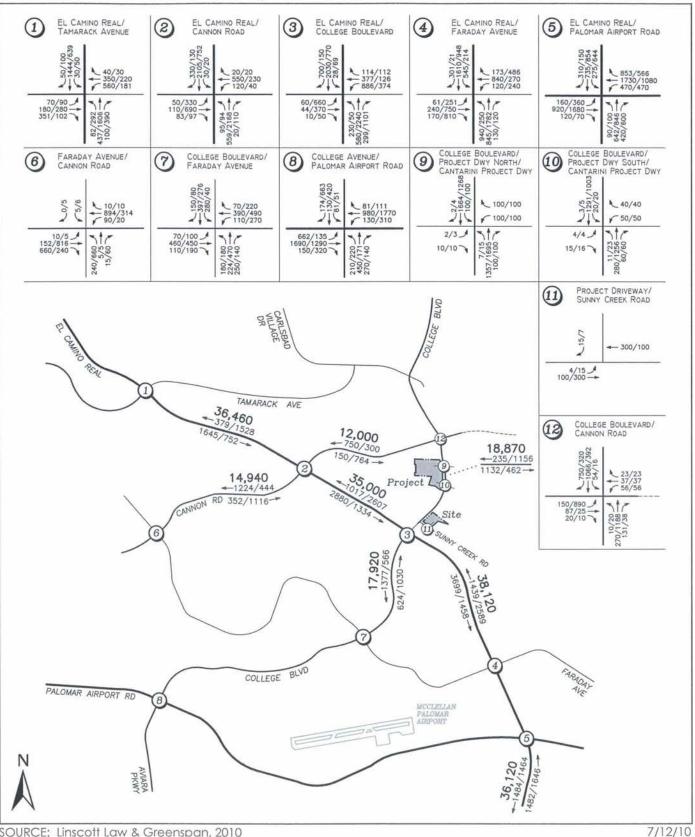

16. Palomar Commons

17. Lowe's Center

A. Intersections

Figure 5.2-6 shows the Year 2020 without Project traffic volumes without the Cannon Road Extension and Figure 5.2-7 shows the Year 2020 with Project traffic volumes without the Cannon Road Extension. Table 5.2-8 shows the Year 2020 with and without Project traffic conditions. As shown, all intersections included in the traffic study area are calculated to operate at LOS D or better, except for the following seven intersections calculated to operate at LOS E or F:

- (#1) El Camino Real/Tamarack Avenue (LOS F/E during the AM/PM peak hours)
- (#2) El Camino Real/Cannon Road (LOS F during the PM peak hour)
- (#3) El Camino Real/College Boulevard (LOS F during the AM/PM peak hours)
- (#4) El Camino Real/Faraday Avenue (LOS F during the AM/PM peak hours)
- (#5) El Camino Real/Palomar Airport Road (LOS F during the PM peak hour)
- (#6) Cannon Road/Faraday Avenue (LOS F during the PM peak hour)
- (#8) College Boulevard/Palomar Airport Road (LOS E/F during the AM/PM peak hours)



BRG CONSULTING, INC.

Dos Colinas EIR

Year 2020 Traffic Volumes Without Cannon Road Extension FIGURE

5.2-6

SOURCE: Linscott Law & Greenspan, 2010

Dos Colinas EIR

Year 2020 With Project Traffic Volumes Without Cannon Road Extension

FIGURE

TABLE 5.2-8 Year 2020 Intersection Operations

Intersection	Traffic Control	Peak Hour	Year 2	020	Year 2 with Pro		Project ∆°	Significant Project
			Delay a	LOS b	Delay	LOS		Impact?
1. El Camino Real/Tamarack Avenue	Signal	AM	152.7	F	154.0	F	1.3	None
		PM	76.1	E	76.4	E	0.3	None
2. El Camino Real/Cannon Road	Signal	AM	37.4	D	38.2	D	0.8	None
	_	PM	118.4	F	119.3	F	0.9	None
3. El Camino Real/College Boulevard	Signal	AM	182.2	F	183.0	F	0.8	None
		PM_	83.4	F	84.8_	F	1.4	None
4. El Camino Real/Faraday Avenue	Signal	AM	133.4	F	134.1	F	0.7	None
		PM	131.0	F	131.9	F_	0.9	None
5. El Camino Real/Palomar Airport	Signal	AM	52.6	D	52.8	D	0.2	None
Road		PM	110.5	F	111.1	F	0.6	None
6. Cannon Road/Faraday Avenue	Signal	AM	37.6	D	38.2	D	0.6	None
	_	PM	113.2	F	114.5	F	1.3	None
7. College Boulevard/Faraday	Signal	AM	27.5	С	27.5	С	0.0	None
Avenue		PM	32.6	С	32.8	С	0.3	None
8. College Boulevard/Palomar	Signal	AM	59.3	E	59.6	E	0.3	None
Airport Road		PM	90.7	F	91.5	F	0.8	None
9. College Boulevard/Project	Signal	AM	14.4	В	18.2	В	3.8	None
Driveway North/Cantarini Project		PM	20.1	C	24.5	С	4.4	None
Driveway								
10. College Boulevard/Project	Signal	AM	9.6	Α	14.6	В	5.0	None
Driveway South/Cantarini Project		PM	10.6	В	10.9	В	0.3	None
Driveway								
11. Project Driveway/Sunny Creek	TWSC d	AM	NA e	NA	10.2	В	-	None
Road		PM	NA	NA	8.8	В		None
12. College Boulevard/Cannon Road	Signal	AM	15.3	В	15.4	В	0.1	None
		PM	37.0	D_	37.1	D	0.4	None

- Notes: a. Delay expressed in seconds
 - b. Level of Service
 - c. Δ denotes Project Induced Delay
 - d. Two-Way Stop Controlled Minor Street Left-turn Delay Reported.
 - e. NA Not Applicable

Source: LLG Engineers, 2010.

SIGNALIZE		UNSIGNALI	ZED
Delay/LOS Thres	holds	Delay/LOS Thre	esholds
Delay	LOS	Delay	LOS
0.0 ≤ 10.0	Α	0.0 to 10.0	Α
10.01 yp 20.0	В	10.1 to 15.0	В
20.01 to 35.0	С	15.1 to 25.0	С
35.1 to 55.0	D	25.1 to 35.0	D
55.1 to 80.0	E	35.1 to 50.0	E
> 80.1	F	> 50.1	F

These seven intersections, which are calculated to operate at LOS E or F without the project in the Year 2020, would continue to operate at the same LOS with the addition of Project traffic. Based on the established significant criteria, the seven intersections would not exceed thresholds; therefore, no significant project related impact would occur.

B. Street Segments

As shown in Table 5.2-9, under the Year 2020 without project conditions, all street segments included in the traffic study area are expected to operate at LOS A, except southbound College Boulevard to Faraday Avenue during the AM peak hour, which is expected to operate at LOS B. With the addition of project traffic, street segments are calculated to continue to operate at LOS B or better. All segments evaluated do not exceed LOS D during peak hours. Therefore, no significant project traffic impacts are expected in Year 2020.

5.2.3.5 Year 2030 Conditions

A. Intersections

Figure 5.2-8 depicts the Year 2030 without project traffic volumes, with the Cannon Road extension. Figure 5.2-9 depicts the Year 2030 with Project traffic volumes, with the Cannon Road extension. Table 5.2-10 shows Year 2030 intersection levels of service with and without project traffic. As shown, all intersections included in the traffic study area are calculated to operate at LOS D or better, except for seven intersections calculated to operate at LOS E or F (intersections #1 through #6 and #8). These seven intersections, which are calculated to operate at LOS E or F without the project in the Year 2030, would continue to operate at the same LOS with the addition of Project traffic. Based on the established significance criteria, the seven intersections would not exceed thresholds; therefore, no significant project related impacts would occur.

B. Street Segments

As shown in Table 5.2-11, under Year 2030 without project conditions, all of the study area street segments are expected to operate at LOS C or better. These street segments would continue to operate at LOS C or better under the Year 2030 with Project conditions; therefore, no significant impacts would occur.

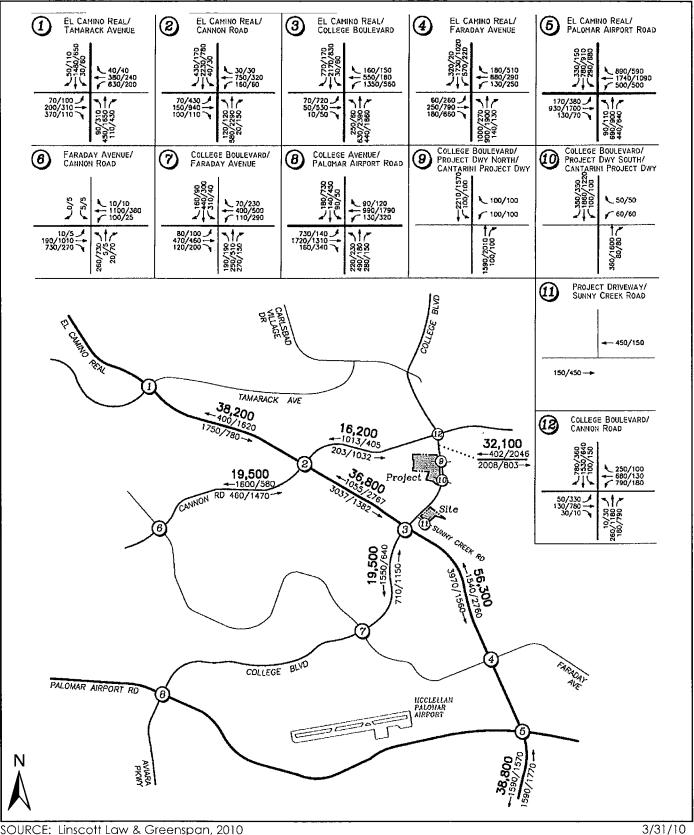
5.2.3.5 Queue Operations

An analysis of queue operations was also conducted for existing, Year 2020, and Year 2030 Conditions. Section 10.0 Queue Operations, and Appendix I of the traffic technical report (EIR Volume II, Appendix B), provide a detailed analysis of queue operations. As shown, the project does not cause queues to exceed the available storage or add more than five vehicles or 125 feet of queue in the Existing and Year 2020 Conditions. For the Year 2030, the project does not cause queues to exceed the available storage or add more than five vehicles or 125 feet of queue except at northbound right-turn movement and eastbound left-turn movement at the intersection of El Camino Real/College Boulevard.

TABLE 5.2-9 Year 2020 Street Segment Operations

	ב ט	, 0707))	5					
	:	Peak			Year 2020		Year 2(Year 2020 with Project	oject	Project	Significant
Street Segment	Direction	Hour	Capacily	Volume	V/Cb	-501	Volume	V/C	SO1	Ϋ́d	Project Impact?
El Camino Real											
	-	AM	3,600	370	0.103	٧	379	0.105	∢	0.002	None
-	n Z	P.	3,600	1520	0.422	A	1528	0.424	∢	0.002	None
lamarack Avenue to Cannon Rodd	C	AM	3,600	1640	0.456	Α	1645	0.457	∢	0.001	None
	28	PM	3,600	740	0.206	٧	752	0.209	∢	0.003	None
	4	AM	5,400	1003	0.186	٧	1017	0.188	∢	0.002	None
- · · · · · · · · · · · · · · · · · · ·	n Z	PM	5,400	2595	0.481	A	2607	0.483	٧	0.002	None
Cannon Road to College Boulevard	ú	AM	5,400	2872	0.532	¥	2880	0.533	A	0.001	None
	28	PM	5,400	1315	0.244	¥	1334	0.247	A	0.003	None
		AM	5,400	1430	0.265	٧	1439	0.266	Α	0.001	None
	9 Z	PM	5,400	2570	0.476	∢	2589	0.479	A	0.003	None
College Boulevard to Faraday Avenue		AM	5,400	3690	0.683	В	3696	0.685	В	0.002	None
	28	PM	5,400	1450	0.269	٧	1458	0.270	V	0.001	None
	2	AM	5,400	1480	0.274	٧	1482	0.274	∢	0.000	None
Palomar Airport Road to Camino Vida	n Z	PM	5,400	1640	0.304	٧	1646	0.305	A	0.001	None
Roble	ć	AM	5,400	1480	0.274	4	1484	0.275	A	0.001	None
	SB	PM	5,400	1460	0.270	٧	1464	0.271	4	0.001	None
Cannon Road	ı							}		}	
	2	AM	3,600	350	0.097	∢	352	0.098	A	0.001	None
	8	PM	3,600	1110	0.308	<	1116	0.310	4	0.002	None
raraday Avenue to El Camino Real	3	AM	3,600	1220	0.339	٧	1224	0.340	∢	0.001	None
	9 X	PM	3,600	440	0.122	Α	444	0.123	∢	0.001	None
	ć	AM	3,600	150	0.042	٧	150	0.042	4	0.00	None
	8	PM	3,600	764	0.212	٧	764	0.212	4	0.000	None
El Camino keal to College boulevara	0747	AM	1,800	750	0.417	<	750	0.417	4	0.000	None
	9 0	PM	1,800	300	0.167	٧	300	0.167	4	0.000	None

TABLE 5.2-9

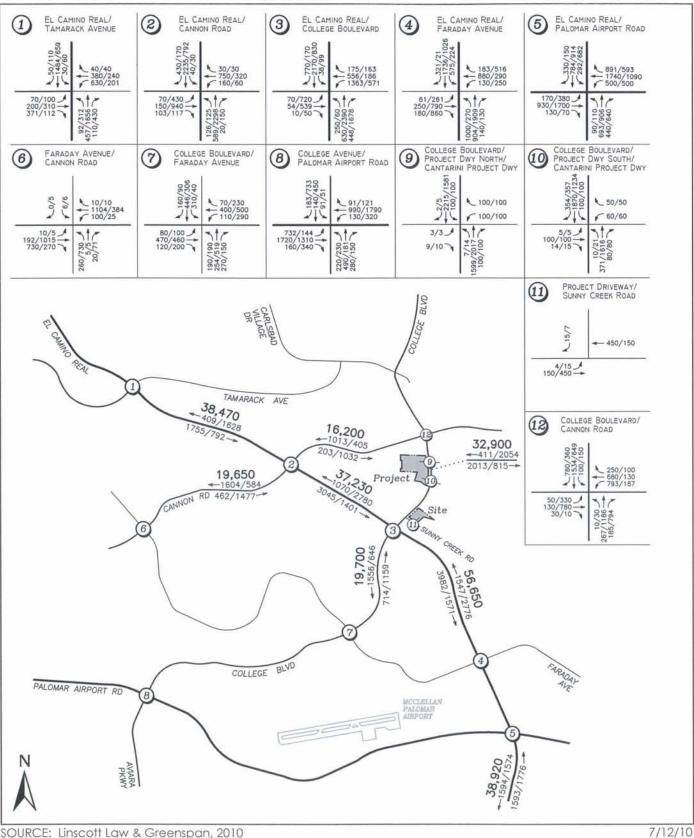

Year 2020 Street Segment Operations (cont'd.)

Direction	Peak Hour	Capacitya		rear 2020		Year 20	020 with Pr	oject	Project ^{Ad}	Significant Project Impact?
	AM	3,600	620	0.172	٧	624	0.173	<	0.00	None
L 2 Z	P.W.	3,600	1020	0.283	٧	1030	0.286	Α	0.003	None
2	ΑM	3,600	1370	0.381	Α	1377	0.383	∢	0.002	None
<u>م</u>	PM	3,600	995	0.156	Α	266	0.157	<	0.001	None
2	AM	3,600	225	0.063	٧	235	0.065	<	0.002	None
 o Z	PM	3,600	1148	0.319	٧	1156	0.321	∢	0.002	None
	AM	3,600	1126	0.313	Α	1132	0.314	∢	0.001	None
35 -	PM	3,600	450	0.125	٧	462	0.128	٧	0.003	None
	S S S B S S S S S S S S S S S S S S S S		A P A P A P A P A P A P A P A P A P A P	Peak Hour Capacity AM 3,600 620 PM 3,600 1020 PM 3,600 1370 PM 3,600 560 PM 3,600 225 PM 3,600 1148 PM 3,600 1126 PM 3,600 1126 PM 3,600 450	Peak Capacitya Ye Hour 3,600 620 PM 3,600 1020 PM 3,600 1370 PM 3,600 560 PM 3,600 225 PM 3,600 1148 PM 3,600 1126 PM 3,600 450	Peak Hour Capacity Year 2020 AM 3,600 620 0.172 PM 3,600 1020 0.283 AM 3,600 1370 0.381 PM 3,600 560 0.156 PM 3,600 225 0.063 PM 3,600 1148 0.319 AM 3,600 1126 0.313 PM 3,600 450 0.125	Peak Hour Capacity Year 2020 AM 3,600 620 0.172 A PM 3,600 1020 0.283 A 1 PM 3,600 1370 0.381 A 1 PM 3,600 560 0.156 A 3 PM 3,600 225 0.063 A 3 PM 3,600 1148 0.319 A 1 PM 3,600 1126 0.313 A 1 PM 3,600 450 0.125 A 1	Peak Hour Capacity Year 2020 AM 3,600 620 0.172 A PM 3,600 1020 0.283 A 1 PM 3,600 1370 0.381 A 1 PM 3,600 560 0.156 A 3 PM 3,600 225 0.063 A 3 PM 3,600 1148 0.319 A 1 PM 3,600 1126 0.313 A 1 PM 3,600 450 0.125 A 1	Peak Hour Capacity Year 2020 Year 2020 with Projection AM 3,600 620 0.172 A 624 0.173 PM 3,600 1020 0.283 A 1030 0.286 AM 3,600 1370 0.381 A 1377 0.383 PM 3,600 560 0.156 A 566 0.157 PM 3,600 225 0.063 A 235 0.065 PM 3,600 1128 0.319 A 1156 0.321 PM 3,600 1126 0.319 A 1132 0.314 PM 3,600 450 0.125 A 462 0.128	Peak Hour Capacity Year 2020 Year 2020 with Project Project AM 3,600 620 0.172 A 624 0.173 A PM 3,600 1020 0.283 A 1030 0.286 A PM 3,600 1370 0.381 A 1377 0.383 A PM 3,600 560 0.156 A 566 0.157 A PM 3,600 225 0.063 A 235 0.065 A PM 3,600 1148 0.319 A 1156 0.321 A PM 3,600 1126 0.313 A 1156 0.321 A PM 3,600 450 0.125 A 462 0.128 A

a Capacity based on 1,800 vehicles per lane per hour b. Volume to Capacity ratio c. Level of Service d. Project-induced increase in V/C LLG Engineers, 2010. Notes:

Source:

2/x	<0.6	0.61-0.70	0.71-0.80	0.81-0.90	0.91-1.0	>1.0
los	∢	മ	U	Δ	ш	ш.



SOURCE: Linscott Law & Greenspan, 2010

Dos Colinas EIR

Year 2030 Traffic Volumes With Cannon Road Extension FIGURE

5.2-8

SOURCE: Linscott Law & Greenspan, 2010

Dos Colinas EIR

FIGURE

Year 2030 With Project Traffic Volumes With Cannon Road Extension

TABLE 5.2-10 Year 2030 Intersection Operations

Intersection	Traffic Control	Peak Hour	Year 2	2030	Year : with Pr		Project ^c	Significant Project
			Delay a	LOS b	Delay	LOS		Impact?
1. El Camino Real/Tamarack Avenue	Signal	AM	185.6	F	186.1	F	0.5	None
		PM	104.3	F	105.1	F	0.8	None
2. El Camino Real/Cannon Road	Signal	AM	76.1	E	76.7	E	0.6	None
		PM	147.7	F	148.5	F	0.8	None
3. El Camino Real/College Boulevard	Signal	AM	296.4	F	297.2	F	0.8	None
		PM_	251.6	F	251.7	F	0.1	None
4. El Camino Real/Faraday Avenue	Signal	AM	156.6	F	157.3	F	0.7	None
		PM	153.7	F	155.5	F	1.8	None
5. El Camino Real/Palomar Airport	Signal	AM	57.6	E	57.7	E	0.1	None
Road		PM	123.1	F	123.6	F	0.5	None
6. Cannon Road/Faraday Avenue	Signal	AM	78.4	Ε	79.2	E	0.8	None
		PM	116.4	F	116.9	F	0.5	None
7. College Boulevard/Faraday	Signal	AM	29.0	С	29.1	С	0.1	None
Avenue		PM	36.4	D	36.6	D_	0.2	None
8. College Boulevard/Palomar	Signal	AM	73.7	E	74.8	E	1.1	None
Airport Road		PM	102.7	F	102.9	F	0.2	None
9. College Boulevard/Project	Signal	AM	21.6	С	37.2	D	15.6	None
Driveway North / Cantarini Project		PM	39.2	D	43.4	D	4.2	None
Driveway					,			
10. College Boulevard/Project	Signal	AM	39.3	D	39.4	D	0.1	None
Driveway South/Cantarini Project		PM	21.2	С	31.1	С	9.9	None
Driveway								
11. Project Driveway/Sunny Creek	TWSC d	AM	NA e	NA	11.4	В	-	None
Road		PM	NA	NA	9.1	Α		None
12. College Boulevard/Cannon Road	Signal	AM	48.0	D	48.1	D	0.1	None
<u> </u>		PM	38.7	D	38.9	D_	0.1	None

- Notes: a. Intersection Capacity Utilization.
 - b. Level of Service
 - c. Δ denotes Project Induced Delay
 - d. Two-Way Stop Controlled Minor Street Left-turn Delay Reported.
 - e. NA Not Applicable

Source: LLG Engineers, 2010

TABLE 5.2-11 Year 2030 Street Segment Operations

Streef Segment Direction	•			Year 2030		Year 20	Year 2030 with Project	roject	Project	Significant
	fion Feak	Capacity	Volume	V/Cb	-SOI	Volume	N/C	LOS	7 ₽ ₽	Project Impact?
El Camino Real										
	AM	3,600	400	0.111	4	409	0.114	∢	0.003	None
8N	PW B	3,600	1620	0.450	4	1628	0.452	4	0.002	None
Tamarack Avenue to Cannon Road	AM	3,600	1750	0.486	٧	1755	0.488	∢	0.002	None
SS	PM	3,600	780	0.217	4	792	0.220	∢	0.003	None
	AM	5,400	1055	0.195	٧	1070	0.198	4	0.003	None
8Z		5,400	2767	0.512	Α	2780	0.515	∢	0.003	None
Cannon Road to College Boulevard	AM	5,400	3037	0.562	٧	3045	0.564	4	0.002	None
28		5,400	1382	0.256	A	1401	0.259	4	0.003	None
	AM	5,400	1540	0.285	A	1547	0.286	4	0.001	None
	<u></u>	5,400	2760	0.511	A	2776	0.514	∢	0.003	None
College Boulevard to Faraday Avenue	AM	5,400	3970	0.735	C	3982	0.737	U	0.002	None
		5,400	1560	0.289	4	1571	0.291	∢	0.002	None
	AM	5,400	1590	0.294	٧	1593	0.295	∢	0.001	None
NB Palamar Airport Road to Camino Vida	P.W.	5,400	1770	0.328	٧	1776	0.329	∢	0.001	None
	AM	5,400	1590	0.294	∢	1594	0.295	<	0.001	None
88	PW PW	5,400	1570	0.291	4	1574	0.291	∢	0.000	None

TABLE 5.2-11 Year 2030 Street Segment Operations (cont'd.)

Streef Segment	Direction	Peak Hour	Capacitya		Year 2030		Year 2	Year 2030 with Project	roject	Project Δ ^d	Significant Project
Connon Road											Impacti
		AM	3,600	460	0.128	4	462	0.128	∢	0.000	None
	<u>. </u>	PM	3,600	1470	0.408	Α	1477	0.410	∢	0.002	None
Faraday Avenue to El Camino Real	-	AM	3,600	1600	0.444	A	1604	0.446	<	0.002	None
	ΣΩ ΣΩ	PM	3,600	580	0.161	Α	584	0.162	∢	0.001	None
	1	AM	5,400	203	0.038	A	203	0.038	∢	0.000	None
- - - - -	<u>т</u>	PM	5,400	1032	0.191	Α	1032	0.191	∢	0.000	None
El Camino Real to College Boulevard		AM	5,400	1013	0.188	٧	1013	0.188	∢	0.000	None
	S S	PM	5,400	405	0.075	Α	405	0.075	٧	0.000	None
College Boulevard											
	-	AM	3,600	710	0.197	٧	714	0.198	∢	0.001	None
	<u>x</u>	PM	3,600	1150	0.319	A	1159	0.322	∢	0.003	None
Faraday Avenue to El Camino Keal	4	AM	3,600	1550	0.431	٧	1556	0.432	∢	0.001	None
	28	PM	3,600	640	0.178	∢	646	0.179	∢	0.001	None
	2	AM	3,600	402	0.112	4	411	0.114	∢	0.002	None
()	Ω Z	PM	3,600	2046	0.568	∢	2054	0.571	∢	0.003	None
El Camino Keal to Cannon Koda	c	AM	3,600	2008	0.558	٨	2013	0.559	4	0.001	None
	35	PM	3,600	803	0.223	∢	815	0.226	∢	0.003	None
Notes: a Capacity based on 1,800 vehicles per lane per hour	e per hour								ļ	SOI	V/C

b. Volume to Capacity ratio

c. Level of Service

d. Project-induced increase in V/C

LLG Engineers, 2010 Source:

<0.6 0.61-0.70 0.71-0.80 0.81-0.90 0.91-1.0

< 8 ○ □ m r

Dos Colinas Draft EIR

A. Site Access Review

CCRC Site

Access to the CCRC site will be provided via two driveways on College Boulevard. Both driveways are planned to align with the future driveways associated with Cantarini Ranch Project. It should also be noted that the Cantarini Ranch Project is further along in the development process and has been conditioned to grade the entire College Boulevard right-of-way between Cannon Road and Sunny Creek Road, providing core improvements and half-width improvements (transitions, curb, gutter, sidewalk) along its project frontage as well as the future signalization of the project's driveways per the City's discretion. However, if the Cantarini Ranch Project does not proceed with development on a schedule suitable for Dos Colinas, the Dos Colinas Project will be responsible for signalization of the two driveways prior to the issuance of occupancy permits. A sight distance analysis should be conducted at both the driveways to verify that corner sight distance is available, even though the driveways will be signalized.

Affordable Housing Site

Access to the affordable housing site will be provided via one driveway on Sunny Creek Road. The driveway proposes full movements across a double yellow centerline. Currently, there is a raised median on Sunny Creek Road. The raised median needs to be removed and painted double yellow to allow full access at the driveway. The maximum traffic accessing this site by making a left-turn is 18 peak hour trips. Such a low volume does not warrant a left-turn pocket.

5.2.4 Mitigation Measures

Based on the established Significance Criteria, no capacity related impacts were calculated at the key study area intersections and street segments. Therefore, no mitigation measures are required for the project. However, the following traffic-related improvements and design features will be implemented:

- 1. Because the project proposes access to College Boulevard, it is required that the project shall provide half-width improvements to College Boulevard along the entire project frontage.
- 2. The two proposed driveways serving the CCRC site on College Boulevard shall be designed to align with the future driveways associated with Cantarini Ranch Project, and provide adequate corner sight distance. In the instance that Dos Colinas proceeds before Cantarini Ranch, the project shall be made responsible to signalize and energize these two driveways.
- 3. A traffic signal shall also be installed at the planned intersection of College Boulevard/Cannon Road. The project shall pay a fair-share contribution to the installation of these signals.
- 4. All internal roadways shall be built to the City of Carlsbad's standards.
- 5. The raised median on Sunny Creek Road shall to be removed in part to allow full access to the affordable housing site.

5.2.5 Impact After Mitigation

No mitigation measures were identified, as there are no traffic/circulation impacts.

This page intentionally left blank.